Selection and Sorting of Heterogeneous Firms Through Competitive Pressures

Kiminori Matsuyama Northwestern University Philip Ushchev *ECARES, Université Libre de Bruxelles*

Last Updated: 2024-01-18; 5:29:36 AM

March 2023

Introduction

Competitive Pressures on Heterogeneous Firms

Main Questions: How do more *competitive pressures*, due to entry of new firms, caused by lower *entry cost* or larger *market size*, affect firms with different productivity?

- Selection of firms
- o Distribution of firm size (in revenue, profit and employment), Distribution of markup and pass-through rates, etc.
- o Sorting of firms across markets with different market sizes

Existing Monopolistic Competition Models with Heterogenous Firms

- o Melitz (2003): under CES Demand System (DS)
 - MC firms sell their products at an exogenous & common markup rate, unresponsive to competitive pressures
 - Market size: no effect on distribution of firm types nor their behaviors; All adjustments at *the extensive margin*.
 - Firms' incentive to move across markets with different market sizes independent of firm productivity *Inconsistent with some evidence for*
 - An increase in the production cost leads to less than proportional increase in the price (the pass-through rate < 1)
 - More productive firms have higher markup rates
 - More productive firms have lower pass-through rates
- o Melitz-Ottaviano (2008) departs from CES with Linear Demand System + the outside competitive sector, which comes with its own restrictions.

This Paper: Melitz under **H.S.A.** Demand System as a framework to study how departing from CES in the direction consistent with the evidence affects the impact of competitive pressures on heterogeneous firms.

Symmetric H.S.A. (Homothetic with a Single Aggregator) DS with Gross Substitutes

Think of a competitive final goods industry generating demand for a continuum of **intermediate inputs** $\omega \in \Omega$, with **CRS production function:** $X = X(\mathbf{x})$; $\mathbf{x} = \{x_{\omega}; \omega \in \Omega\} \Leftrightarrow \text{Unit cost function}, P = P(\mathbf{p})$; $\mathbf{p} = \{p_{\omega}; \omega \in \Omega\}$.

Market share of ω depends solely on a single variable, its own price normalized by the common price aggregator

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left(\frac{p_{\omega}}{A(\mathbf{p})}\right), \quad \text{where} \quad \int_{\Omega} s \left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1.$$

- $s: \mathbb{R}_{++} \to \mathbb{R}_{+}$: the market share function, C^3 , decreasing in the normalized price $z_{\omega} \equiv p_{\omega}/A$ for $s(z_{\omega}) > 0$ with $\lim_{z \to \bar{z}} s(z) = 0$. If $\bar{z} \equiv \inf\{z > 0 | s(z) = 0\} < \infty$, $\bar{z}A(\mathbf{p})$ is the choke price.
- $A = A(\mathbf{p})$: the common price aggregator defined implicitly by the adding-up constraint $\int_{\Omega} s(p_{\omega}/A)d\omega \equiv 1$. $A(\mathbf{p})$ linear homogenous in \mathbf{p} for a fixed Ω . A larger Ω reduces $A(\mathbf{p})$.

Special Cases
$$s(z) = \gamma z^{1-\sigma}; \qquad \sigma > 1$$
 Special Cases
$$s(z) = \gamma \max\{-\ln(z/\bar{z}), 0\}; \qquad \bar{z} < \infty$$
 Constant Pass Through (CoPaTh)
$$s(z) = \gamma \max\{\left[\sigma + (1-\sigma)z^{\frac{1-\rho}{\rho}}\right]^{\frac{\rho}{1-\rho}}, 0 \} \qquad 0 < \rho < 1$$
 As $\rho \nearrow 1$, CoPaTh converges to CES with $\bar{z}(\rho) \equiv (\sigma/(\sigma-1))^{\frac{\rho}{1-\rho}} \to \infty$.

P(p) vs. A(p)

Definition:

$$s_{\omega} \equiv \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) = s(z_{\omega})$$

where

$$\int_{\Omega} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1.$$

By differentiating the adding-up constraint,

$$\frac{\partial \ln A(\mathbf{p})}{\partial \ln p_{\omega}} = \frac{[\zeta(z_{\omega}) - 1]s(z_{\omega})}{\int_{\Omega} [\zeta(z_{\omega'}) - 1]s(z_{\omega'})d\omega'} \neq s(z_{\omega}) = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}}$$

unless $\zeta(z_{\omega})$ is constant, where

Price Elasticity

Function:

$$\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \mathcal{E}_s(z) > 1 \Leftrightarrow s(z) = \gamma \exp\left[\int_{z_0}^z \frac{1 - \zeta(\xi)}{\xi} d\xi\right]; \lim_{z \to \bar{z}} \zeta(z) = \infty, \text{ if } \bar{z} < \infty.$$

By integrating the definition,

$$\frac{A(\mathbf{p})}{P(\mathbf{p})} = c \exp \left[\int_{\Omega} s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) \Phi \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) d\omega \right], \quad \text{where} \quad \Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{\bar{z}} \frac{s(\xi)}{\xi} d\xi$$

Note: $A(\mathbf{p})/P(\mathbf{p})$ is not constant, unless CES $\Leftrightarrow \zeta(z) = \sigma \Leftrightarrow s(z) = \gamma z^{1-\sigma} \Leftrightarrow \Phi(z) = 1/(\sigma - 1)$.

- \checkmark $A(\mathbf{p})$, the inverse measure of *competitive pressures*, captures *cross price effects* in the DS, the reference price for MC firms
- \checkmark $P(\mathbf{p})$, the inverse measure of TFP, captures the *productivity effects* of price changes, the reference price for consumers.
- $\checkmark \Phi(z)$, the measure of "love for variety." Matsuyama & Ushchev (2023). $\zeta'(\cdot) \ge 0 \implies \Phi'(\cdot) \le 0$; $\Phi'(\cdot) = 0 \iff \zeta'(\cdot) = 0$.

Note: Our 2017 paper proved the integrability = the quasi-concavity of $P(\mathbf{p})$, iff $\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \mathcal{E}_s(z) > 0$.

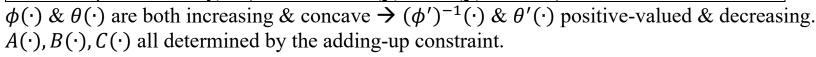
Why H.S.A.

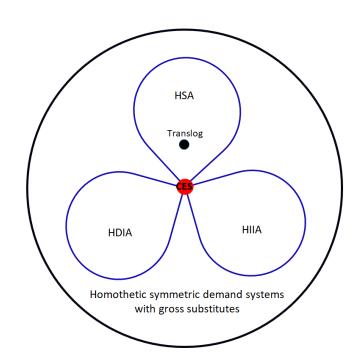
- o **Homothetic** (unlike the linear DS and most other commonly used non-CES DSs)
 - a single measure of market size; the demand composition does not matter.
 - isolate the effect of endogenous markup rate from nonhomotheticity
 - straightforward to use it as a building block in multi-sector models with any upper-tier (incl. nonhomothetic) DS
- o Nonparametric and flexible (unlike CES and translog, which are special cases)
 - can be used to perform robustness-check for CES
 - allow for (but no need to impose)
 - ✓ the choke price,
 - ✓ Marshall's 2nd law (Price elasticity is increasing in price) → more productive firms have higher markup rates
 - ✓ what we call the 3^{rd} law (the rate of increase in the price elasticity is decreasing in price) → more productive firms have lower pass-through rates.
- o **Tractable** due to **Single Aggregator** (unlike **Kimball**, which needs two aggregators), a *sufficient statistic* for competitive pressures, which acts like a *magnifier of firm heterogeneity*
 - guarantee the existence & uniqueness of free-entry equilibrium with firm heterogeneity
 - simple to conduct most comparative statics without *parametric* restrictions on demand or productivity distribution.
 - no need to assume zero overhead cost (unlike MO and ACDR)
- o Defined by the market share function, for which data is readily available and easily identifiable.

Three Classes of Homothetic Demand Systems: Matsuyama-Ushchev (2017)

Here we consider a continuum of varieties ($\omega \in \Omega$), gross substitutes, and symmetry

CES	$s_{\omega} \equiv \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = f\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) \Leftrightarrow s_{\omega} \propto \left(\frac{p_{\omega}}{P(\mathbf{p})}\right)^{1-\sigma}$		
H.S.A. (Homotheticity with a Single Aggregator)	$s_{\omega} = s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right),$	$\frac{P(\mathbf{p})}{A(\mathbf{p})} \neq c$, unless CES	
HDIA (Homotheticity with Direct Implicit Additivity) Kimball is a special case:	$s_{\omega} = \frac{p_{\omega}}{P(\mathbf{p})} (\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right),$	$\frac{P(\mathbf{p})}{B(\mathbf{p})} \neq c$, unless CES	
HIIA (Homotheticity with Indirect Implicit Additivity)	$s_{\omega} = \frac{p_{\omega}}{C(\mathbf{p})} \theta' \left(\frac{p_{\omega}}{P(\mathbf{p})} \right),$	$\frac{P(\mathbf{p})}{C(\mathbf{p})} \neq c$, unless CES	





The 3 classes are pairwise disjoint with the sole exception of CES.

Under HDIA(Kimball) and HIIA, unlike HSA

- Two aggregators needed for the market shares. [One aggregator enough for the price elasticity under all 3 classes.]
- The existence and uniqueness of free-entry equilibrium not guaranteed without some strong restrictions on both productivity distribution and the price elasticity function.

Melitz under HSA: Main Results

- Existence & Uniqueness of Equilibrium: straightforward under H.S.A.
- Melitz under CES: impacts of entry/overhead costs on the masses of entrants/active firms hinges on the sign of the derivative of the elasticity of the pdf of marginal cost; Pareto is the knife-edge! (new results!)
- Cross-Sectional Implications: profits and revenues are always higher among more productive.
 - \circ 2nd Law = incomplete pass-through \Leftrightarrow the procompetitive effect \Leftrightarrow strategic complementarity in pricing.
 - \circ 2nd (3rd) Law \rightarrow more productive firms have higher markup (lower pass-through) rates.
 - \circ 2nd & 3rd Laws \rightarrow hump-shaped employment; more productive hire less under high overhead.

• General Equilibrium Comparative Statics

- Entry cost \downarrow : 2nd (3rd) Law \rightarrow markup rates \downarrow (pass-through rates \uparrow) for all firms. profits (revenues) decline faster among less productive \rightarrow a tougher selection.
- \circ Overhead cost \downarrow : similar effects when the employment is decreasing in firm productivity.
- o Market size ↑: 2nd (3rd) Law → markup rates ↓ (pass-through rates ↑) for all firms.

 profits (revenues) ↑ among more productive; ↓ among less productive.
- o *Due to the composition effect*, these changes may *increase* the average markup rate & the aggregate profit share in spite of 2nd Law and *reduce* the average pass-through in spite of 3rd Law; Pareto is the knife-edge *for entry cost* ↑.
- Sorting of Heterogeneous Firms across markets that differ in size: Larger markets \rightarrow more competitive pressures.
 - \circ 2nd Law \rightarrow more (less) productive go into larger (smaller) markets.
 - o *Composition effect*, average markup (pass-through) rates can be *higher* (*lower*) in larger and more competitive markets in spite of 2nd (3rd) Law.

(Highly Selective) Literature Review

Non-CES Demand Systems: Matsuyama (2023) for a survey; H.S.A. Demand System: Matsuyama-Ushchev (2017)

MC with Heterogeneous Firms: Melitz (2003) and many others: Melitz-Redding (2015) for a survey

MC under non-CES demand systems: Thisse-Ushchev (2018) for a survey

- *Nonhomothetic non-CES:*
 - $U = \int_{\Omega} u(x_{\omega})d\omega$: Dixit-Stiglitz (77), Behrens-Murata (07), ZKPT (12), Mrázová-Neary(17), Dhingra-Morrow (19); ACDR (19)
 - o Linear-demand system with the outside sector: Ottaviano-Tabuchi-Thisse (2002), Melitz-Ottaviano (2008)
- Homothetic non-CES: Feenstra (2003), Kimball (1995), Matsuyama-Ushchev (2020a,b, 2023)
- H.S.A. Matsuyama-Ushchev (2022), Kasahara-Sugita (2020), Grossman-Helpman-Lhuiller (2021), Fujiwara-Matsuyama (2022), Baqaee-Fahri-Sangani (2023)

Empirical Evidence: The 2nd Law: DeLoecker-Goldberg (14), Burstein-Gopinath (14); The 3rd Law: Berman et.al.(12), Amiti et.al.(19), Market Size Effects: Campbell-Hopenhayn(05); Rise of markup: Autor et.al.(20), DeLoecker et.al.(20)

Selection of Heterogeneous Firms through Competitive Pressures

Melitz-Ottaviano (2008), Baqaee-Fahri-Sangani (2023), Edmond-Midrigan-Xu (2023)

Sorting of Heterogeneous Firms Across Markets:

- Reduced Form/Partial Equilibrium; Mrázová-Neary (2019), Nocke (2006)
- General Equilibrium: Baldwin-Okubo (2006), Behrens-Duranton-RobertNicoud (2014), Davis-Dingel (2019), Gaubert (2018), Kokovin et.al. (2022)

Log-Super(Sub)modularity: Costinot (2009), Costinot-Vogel (2015)

Structure of the Talk

- Introduction
- Monopolistic Competition under H.S.A.
- Selection of Heterogenous Firms: A Single Market Setting
 - o Existence and Uniqueness
 - o Cross-Sectional Implications under the 2nd & 3rd Laws
 - o Comparative Statics: General Equilibrium Effects
- Sorting of Heterogenous Firms: A Multi-Market Setting
- Appendix: Some Parametric Families of H.S.A.

K. Matsuyama and P. Ushchev

Monopolistic Competition under H.S.A.

Pricing: Markup & Pass-Through Rates. Taking the value of $A = A(\mathbf{p})$ given, firm ω chooses p_{ω} .

Lerner Pricing Formula

$$p_{\omega}\left[1-\frac{1}{\zeta(p_{\omega}/A)}\right]=\psi_{\omega}\Longrightarrow\frac{p_{\omega}}{A}\left[1-\frac{1}{\zeta(p_{\omega}/A)}\right]=\frac{\psi_{\omega}}{A},$$

 ψ_{ω} : firm-specific (quality-adjusted) marginal cost (in labor, the numeraire)
Under the mild regularity condition, LHS is monotone \rightarrow firms with the same ψ set the same price $\rightarrow p_{\omega} = p_{\psi}$.

$$\frac{p_{\psi}}{A} \equiv z_{\psi} = Z\left(\frac{\psi}{A}\right) \in (\psi/A, \bar{z}), Z'(\cdot) > 0;$$

$$\zeta(z_{\psi}) = \zeta\left(Z\left(\frac{\psi}{A}\right)\right) \equiv \sigma\left(\frac{\psi}{A}\right) > 1;$$
 Markup Rate: $\mu_{\psi} \equiv \frac{p_{\psi}}{\psi} = \frac{\sigma(\psi/A)}{\sigma(\psi/A) - 1} \equiv \mu\left(\frac{\psi}{A}\right) > 1$

$$\Rightarrow \frac{1}{\sigma(\psi/A)} + \frac{1}{\mu(\psi/A)} = 1 \Leftrightarrow \left[\sigma\left(\frac{\psi}{A}\right) - 1\right] \left[\mu\left(\frac{\psi}{A}\right) - 1\right] = 1$$

Pass-Through Rate:

$$\rho_{\psi} \equiv \frac{\partial \ln p_{\psi}}{\partial \ln \psi} = \mathcal{E}_{Z} \left(\frac{\psi}{A} \right) \equiv \rho \left(\frac{\psi}{A} \right) = 1 + \mathcal{E}_{\mu} \left(\frac{\psi}{A} \right) = 1 - \frac{\mathcal{E}_{\sigma}(\psi/A)}{\sigma(\psi/A) - 1} > 0$$

are all functions of the normalized cost, ψ/A , only; continuously differentiable.

- Market size $L = \mathbf{px}$ affects the pricing behaviors of firms only through its effects on A.
- More competitive pressures, a lower A, act like a magnifier of firm heterogeneity.

Under CES, $\sigma(\cdot) = \sigma$; $\mu(\cdot) = \sigma/(\sigma - 1) = \mu$; $\rho(\cdot) = 1$.

Revenue, Profit, & Employment

Revenue
$$R_{\psi} = s(z_{\psi})L = s\left(Z\left(\frac{\psi}{A}\right)\right)L \equiv r\left(\frac{\psi}{A}\right)L \qquad \Rightarrow \qquad \mathcal{E}_{r}\left(\frac{\psi}{A}\right) = -\left[\sigma\left(\frac{\psi}{A}\right) - 1\right]\rho\left(\frac{\psi}{A}\right) < 0$$
(Gross) Profit
$$\Pi_{\psi} = \frac{r(\psi/A)}{\sigma(\psi/A)}L \equiv \pi\left(\frac{\psi}{A}\right)L \qquad \Rightarrow \qquad \mathcal{E}_{\pi}\left(\frac{\psi}{A}\right) = 1 - \sigma\left(\frac{\psi}{A}\right) < 0$$
(Variable)
$$\psi x_{\psi} = \frac{r(\psi/A)}{\mu(\psi/A)}L \equiv \ell\left(\frac{\psi}{A}\right)L \qquad \Rightarrow \qquad \mathcal{E}_{\ell}\left(\frac{\psi}{A}\right) = 1 - \sigma\left(\frac{\psi}{A}\right)\rho\left(\frac{\psi}{A}\right) \lessgtr 0$$
Employment
$$\psi x_{\psi} = \frac{r(\psi/A)}{\mu(\psi/A)}L \equiv \ell\left(\frac{\psi}{A}\right)L \qquad \Rightarrow \qquad \mathcal{E}_{\ell}\left(\frac{\psi}{A}\right) = 1 - \sigma\left(\frac{\psi}{A}\right)\rho\left(\frac{\psi}{A}\right) \lessgtr 0$$

- Revenue $r(\psi/A)L$, profit $\pi(\psi/A)L$, employment $\ell(\psi/A)L$ all functions of ψ/A , multiplied by **market size** L, continuously differentiable under mild regularity conditions.
- Their elasticities ε_r(·), ε_π(·) and ε_ℓ(·) depend solely on σ(·) and ρ(·).
 More competitive pressures, a lower A, act like a magnifier of firm heterogeneity.
 Market size affects the distribution of the profit, revenue and employment across firms only via its effects on A.
 Under CES, r(·)/π(·) = σ; r(·)/ℓ(·) = μ = σ/(σ 1) ⇒ ε_r(·) = ε_π(·) = ε_ℓ(·) = 1 σ < 0.
- Both revenue $r(\psi/A)L$ and profit $\pi(\psi/A)L$ are always strictly decreasing in ψ/A .
- Employment $\ell(\psi/A)L$ may be nonmonotonic in ψ/A .

Selection and Sorting of Heterogeneous Firms through Competitive Pressures	Selection an	d Sorting of He	terogeneous Firms	s through Com	petitive Pressures
--	--------------	-----------------	-------------------	---------------	--------------------

K. Matsuyama and P. Ushchev

Selection of Heterogenous Firms: A Single-Market Setting

General Equilibrium: Existence & Uniqueness

As in Melitz, Market size = total labor supply is L > 0

Ex-ante identical firms pay the entry cost $F_e > 0$ to draw $\psi \sim G(\psi)$, cdf whose support, $(\underline{\psi}, \overline{\psi}) \subset (0, \infty)$, After learning ψ , decide whether to pay the overhead F > 0 to stay & produce.

Cutoff Rule: stay if $\psi < \psi_c$; exit if $\psi > \psi_c$, where

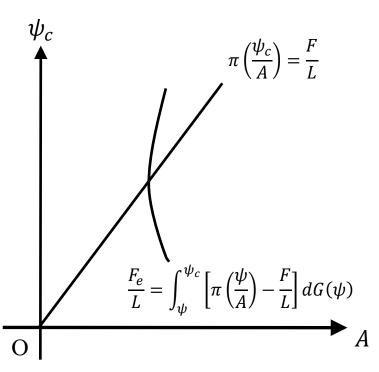
$$\max_{\psi_c} \int_{\underline{\psi}}^{\psi_c} \left[\pi \left(\frac{\psi}{A} \right) L - F \right] dG(\psi) \Longrightarrow \pi \left(\frac{\psi_c}{A} \right) L = F$$

positive-sloped, as $A \downarrow$ (more competitive pressures) $\Rightarrow \psi_c \downarrow$ (tougher selection). rotate clockwise, as $F/L \uparrow$ (higher overhead/market size) $\Rightarrow \psi_c/A \downarrow$.

$$F_e = \int_{\underline{\psi}}^{\psi_c} \left[\pi \left(\frac{\psi}{A} \right) L - F \right] dG(\psi)$$

shift to the left as $F_e \downarrow$ (lower entry cost) $\Rightarrow A \downarrow$ (more competitive pressures).

 $A = A(\mathbf{p})$ and ψ_c : uniquely determined, respond continuously to $F_e/L \& F/L$ under mild regularity conditions. (This proof of unique existence applies also to the Melitz model under CES.)



Equilibrium Mass of Firms With $A \& \psi_c$ determined, from the Adding-up Constraint,

Mass of Active Firms

= the measure of Ω .

$$MG(\psi_c) = \left[\int_{\underline{\psi}}^{\psi_c} r\left(\frac{\psi}{A}\right) \frac{dG(\psi)}{G(\psi_c)} \right]^{-1} = \left[\int_{\underline{\xi}}^{1} r\left(\frac{\psi_c}{A}\xi\right) d\tilde{G}(\xi;\psi_c) \right]^{-1} > 0$$

where

$$\tilde{G}(\xi;\psi_c) \equiv \frac{G(\psi_c\xi)}{G(\psi_c)}$$

is the cdf of $\xi \equiv \psi/\psi_c$, conditional on $\underline{\xi} \equiv \underline{\psi}/\psi_c < \underline{\xi} \le 1$.

Lemma 1: $\mathcal{E}'_{a}(\psi) < 0 \Longrightarrow \mathcal{E}'_{G}(\psi) < 0$; $\mathcal{E}'_{a}(\psi) \ge 0 \Longrightarrow \mathcal{E}'_{G}(\psi) \ge 0$, with some boundary conditions.

Lemma 2: A lower ψ_c shifts $\tilde{G}(\xi;\psi_c)$ to the right (left) in MLR if $\mathcal{E}'_g(\psi) < (>)0$ and in FSD if $\mathcal{E}'_G(\psi) < (>)0$.

- Some evidence for $\mathcal{E}'_g(\psi) > 0 \Longrightarrow \psi_c \downarrow$ (tougher selection) shifts $\tilde{G}(\xi; \psi_c)$ to the left.
- Pareto-productivity, $G(\psi) = (\psi/\bar{\psi})^{\kappa} \Rightarrow \mathcal{E}'_g(\psi) = \mathcal{E}'_G(\psi) = 0 \Rightarrow \tilde{G}(\xi; \psi_c)$ is independent of ψ_c .
- Fréchet, Weibull, Lognormal; $\mathcal{E}'_g(\psi) < 0 \Rightarrow \mathcal{E}'_G(\psi) < 0 \Rightarrow \psi_c \downarrow$ (tougher selection) shifts $\tilde{G}(\xi; \psi_c)$ to the right.

Equilibrium can be solved recursively under H.S.A.!!

Under HDIA/HIIA, one needs to solve the 3 equations simultaneously for 3 variables, ψ_c & the two price aggregates.

Aggregate Labor Cost and Profit Shares and TFP

Notations:

The $w(\cdot)$ -weighted average of $f(\cdot)$ among the active firms, $\psi \in (\underline{\psi}, \psi_c)$	$\mathbb{E}_{w}(f) \equiv \frac{\int_{\underline{\psi}}^{\psi_{c}} f\left(\frac{\psi}{A}\right) w\left(\frac{\psi}{A}\right) dG(\psi)}{\int_{\underline{\psi}}^{\psi_{c}} w\left(\frac{\psi}{A}\right) dG(\psi)}.$
The unweighted average of $f(\cdot)$ among the active firms, $\psi \in (\underline{\psi}, \psi_c)$	$\mathbb{E}_{1}(f) \equiv \frac{\int_{\underline{\psi}}^{\psi_{c}} f\left(\frac{\psi}{A}\right) dG(\psi)}{\int_{\underline{\psi}}^{\psi_{c}} dG(\psi)}.$

$$\Rightarrow \mathbb{E}_{w}\left(\frac{f}{w}\right) = \frac{\mathbb{E}_{1}(f)}{\mathbb{E}_{1}(w)} = \left[\mathbb{E}_{f}\left(\frac{w}{f}\right)\right]^{-1}.$$

Then,

Aggregate TFP	$\ln\left(\frac{X}{L}\right) = \ln\left(\frac{1}{P}\right) = \ln\left(\frac{c}{A}\right) + \mathbb{E}_r[\Phi \circ Z]$
Aggregate Labor Cost Share (Average inverse markup rate)	$\frac{\mathbb{E}_1(\ell)}{\mathbb{E}_1(r)} = \mathbb{E}_r\left(\frac{1}{\mu}\right) = 1 - \left[\mathbb{E}_\pi\left(\frac{\mu}{\mu - 1}\right)\right]^{-1} = \frac{1}{\mathbb{E}_\ell(\mu)}$
Aggregate Profit Share (Average inverse price elasticity)	$\frac{\mathbb{E}_1(\pi)}{\mathbb{E}_1(r)} = \mathbb{E}_r\left(\frac{1}{\sigma}\right) = \frac{1}{\mathbb{E}_{\pi}(\sigma)} = 1 - \left[\mathbb{E}_{\ell}\left(\frac{\sigma}{\sigma - 1}\right)\right]^{-1}$

by applying the above formulae to $\pi(\cdot)/r(\cdot) = 1 - \ell(\cdot)/r(\cdot) = 1/\sigma(\cdot) = 1 - 1/\mu(\cdot)$,

Revisiting Melitz (2003) under CES: $s(z) = \gamma z^{1-\sigma}$

Pricing:

$$\mu\left(\frac{\psi}{A}\right) = \frac{\sigma}{\sigma - 1} > 1 \Rightarrow \rho\left(\frac{\psi}{A}\right) = 1$$
$$\Rightarrow \mathcal{E}_r\left(\frac{\psi}{A}\right) = \mathcal{E}_\pi\left(\frac{\psi}{A}\right) = \mathcal{E}_\ell\left(\frac{\psi}{A}\right) = 1 - \sigma < 0.$$

Relative firm size, in revenue, profit, employment, unchanged across equilibriums.

Cutoff Rule:

$$c_0 L \left(\frac{\psi_c}{A}\right)^{1-\sigma} = F,$$

Free Entry Condition:

$$\int_{\psi}^{\psi_c} \left[c_0 L \left(\frac{\psi}{A} \right)^{1-\sigma} - F \right] dG(\psi) = F_e,$$

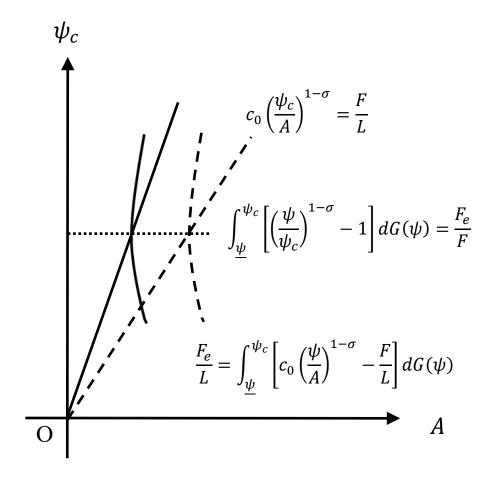
with $c_0 > 0$. As L changes, the intersection moves along

$$\int_{\psi}^{\psi_c} \left[\left(\frac{\psi}{\psi_c} \right)^{1-\sigma} - 1 \right] dG(\psi) = \frac{F_e}{F}$$

horizontal, i.e., independent of A, hence of L.

Proposition 1: Under CES,

- $L \uparrow$ keeps ψ_c unaffected; increases both M and $MG(\psi_c)$ proportionately; All adjustments at the extensive margin.
- $F_e \downarrow$ reduces ψ_c ; increases M; increases (decreases) $MG(\psi_c)$ if $\mathcal{E}'_G(\psi) < (>)0$; $MG(\psi_c)$ unaffected under Pareto.
- $F \downarrow$ increases ψ_c ; increases $MG(\psi_c)$; increases (decreases) \underline{M} if $\mathcal{E}'_G(\psi) < (>)0$; M unaffected under Pareto.



Cross-Sectional Implications under 2nd & 3rd Laws

Marshall's 2nd Law: Cross-Sectional Implications (Proposition 2)

(A2): $\zeta(z_{\psi})$ is increasing in $z_{\psi} \equiv p_{\psi}/A = Z(\psi/A)$

Note: $A2 \Rightarrow A1$.

- Price elasticity $\zeta(Z(\psi/A)) \equiv \sigma(\psi/A)$, $\sigma'(\psi/A) > 0$; high- ψ firms operate at more elastic parts of demand curve.
 - o Markup Rate, $\mu(\psi/A)$, decreasing in $\psi/A \Leftrightarrow \mathcal{E}_{\mu}(\psi/A) < 0$; high- ψ firms charge lower markup rates.
 - o **Incomplete Pass-Through:** The pass-through rate, $\rho(\psi/A) = 1 + \mathcal{E}_{\mu}(\psi/A) < 1$.
- Procompetitive effect of entry/Strategic complementarity in pricing, $\frac{\partial \ln p_{\psi}}{\partial \ln A} = 1 \rho(\psi/A) = -\mathcal{E}_{\mu}(\psi/A) > 0$. Markups lower under more competitive pressures $(A = A(\mathbf{p}) \downarrow)$, due to either a larger Ω and/or a lower \mathbf{p}

Lemma 5: For a positive-valued function of a single variable, $f(\cdot)$,

$$sgn\left\{\frac{\partial^{2} \ln f(\psi/A)}{\partial \psi \partial A}\right\} = -sgn\left\{\mathcal{E}_{f}'\left(\frac{\psi}{A}\right)\right\} = -sgn\left\{\frac{d^{2} \ln f\left(e^{\ln(\psi/A)}\right)}{(d\ln(\psi/A))^{2}}\right\}$$

 $f(\psi/A) \log$ -super(sub)modular in $\psi \& A \Leftrightarrow \mathcal{E}'_f(\cdot) < (>)0 \Leftrightarrow \ln f(e^{\ln(\psi/A)})$ concave (convex) in $\ln(\psi/A)$

• Profit, $\pi(\psi/A)L$, always decreasing, strictly log-supermodular in ψ and A. $A \downarrow \rightarrow$ a proportionately larger decline in profit for high- ψ firms \rightarrow Larger dispersion of profit

3rd Law: Cross-Sectional Implications (Propositions 3, 4, and 5)

In addition to A2, if we further assume, with some empirical support, e.g. Berman et.al.(2012), Amiti et.al.(2019),

(A3):
$$\mathcal{E}'_{\zeta/(\zeta-1)}(z) \ge (>)0 \Leftrightarrow \mathcal{E}'_{\mu}(\psi/A) = \rho'(\psi/A) \ge (>)0$$
. --we call it **Weak (Strong) 3rd Law**. Under translog, $\rho(\psi/A)$ is strictly decreasing, violating A3

- Markup rate, $\mu(\psi/A)$, decreasing under A2, log-submodular in ψ & A under A3. For strong A3, it is strict and $A \downarrow \rightarrow$ a proportionately smaller decline in markup rate for high- ψ firms \rightarrow smaller dispersion of markup rate
- Revenue, $r(\psi/A)L$, always decreasing, strictly log-supermodular in ψ & A under weak A3 $A \downarrow \rightarrow$ a proportionately larger decline in revenue for high- ψ firms \rightarrow Larger dispersion of revenue
- Employment, $\ell(\psi/A)L = \frac{r(\psi/A)}{\mu(\psi/A)}L$, hump-shaped in ψ/A , strictly log-supermodular in ψ & A under weak A3 Employment is increasing in ψ across all active firms with a large enough overhead/market size ratio. $A \downarrow \rightarrow$ Employment up for the most productive firms.
- Pass-through rate, $\rho(\psi/A)$, strictly log-submodular in ψ & A for a small enough \bar{z} under strong A3 $A \downarrow \to$ a proportionately smaller increase in the pass-through rate for low- ψ firms among the active.

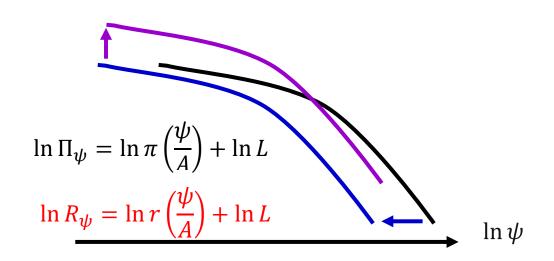
Cross-Sectional Implications of More Competitive Pressures, $A \downarrow$: A Graphic Representation

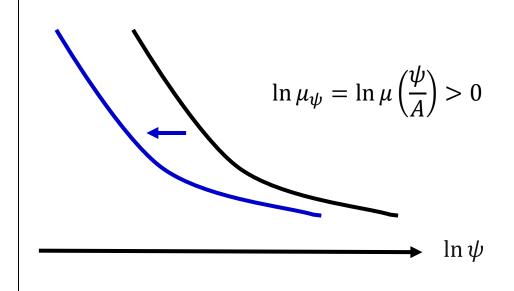
Profit(Revenue) Function: $\Pi_{\psi} = \pi(\psi/A)L$;, $R_{\psi} = r(\psi/A)L$

- always decreasing in ψ
- strictly log-supermodular under A2 (Weak A3)
- \rightarrow A \downarrow with L fixed shifts down with a steeper slope at each ψ ;
- \rightarrow A \(\psi\$ due to L \(\frac{1}{2}\), a parallel shift up, a single-crossing.

Markup Rate Function: $\mu_{\psi} = \mu(\psi/A) > 1$

- decreasing in ψ under A2
- weakly log-submodular *under Weak A3*
- strictly log-submodular *under Strong A3*
- $\rightarrow A \downarrow$ shifts down with a flatter slope at each ψ

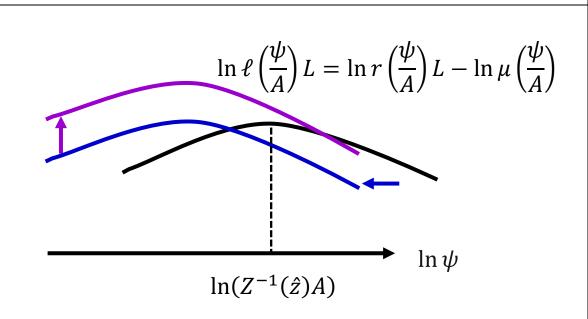




- ✓ With $\ln \psi$ in the horizontal axis, $A \downarrow$ causes a parallel leftward shift of the graphs in these figures.
- $\checkmark f(\psi/A)$ is strictly log-super(sub)modular in $\psi \& A \Leftrightarrow \ln f(\psi/A)$ is (strictly) concave(convex) in $\ln(\psi/A)$.

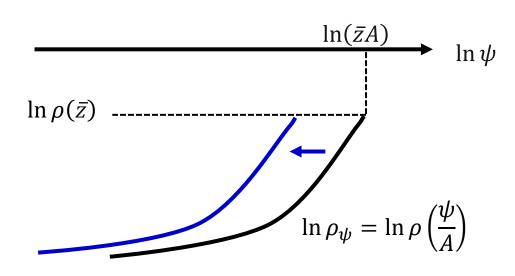
Employment Function: $\ell(\psi/A)L = r(\psi/A)L/\mu(\psi/A)$

- Hump-shaped in ψ under A2 and weak A3. \rightarrow A \downarrow shifts up (down) for a low (high) ψ with A \downarrow
- Strictly log-supermodular *under weak A3* for $A \downarrow$ with a fixed L; for $A \downarrow$ caused by $L \uparrow$ *Single-crossing* even with a fixed L



Pass-Through Rate Function: $\rho_{\psi} = \rho(\psi/A)$

- $\rho(\psi/A) < 1$ under A2, hence it cannot be strictly log-submodular for a higher range of ψ/A
- Strictly increasing in ψ under Strong A3
- Strictly log-submodular for a lower range of ψ/A under A2 and $Strong A3 \Rightarrow A \downarrow$ shifts up with a steeper slope at each ψ with a small enough \overline{z} .



In summary, more competitive pressures $(A \downarrow)$

- $\mu(\psi/A) \downarrow$ under A2 & $\rho(\psi/A) \uparrow$ under strong A3
- Profit, Revenue, Employment become more concentrated among the most productive.

Selection and Sorting	of Heterogeneous	Firms through Cor	npetitive Pressures

K. Matsuyama and P. Ushchev

Comparative Statics: General Equilibrium Effects

Comparative Statics: General Equilibrium Effects of F_e , L, and F on A and ψ_c

Proposition 6:

$$\begin{bmatrix} d \ln A \\ d \ln \psi_c \end{bmatrix} = \frac{\mathbb{E}_1(\pi)}{\mathbb{E}_1(\ell)} \begin{bmatrix} 1 - f_x & f_x \\ 1 - f_x & f_x - \delta \end{bmatrix} \begin{bmatrix} d \ln(F_e/L) \\ d \ln(F/L) \end{bmatrix}$$

where

$$\frac{\mathbb{E}_{1}(\pi)}{\mathbb{E}_{1}(\ell)} = \frac{1}{\mathbb{E}_{\pi}(\sigma) - 1} = \{\mathbb{E}_{r}[\mu^{-1}]\}^{-1} - 1 = \mathbb{E}_{\ell}(\mu) - 1 > 0;$$

The average profit/average labor cost ratio among the active firms

$$f_x \equiv \frac{FG(\psi_c)}{F_e + FG(\psi_c)} = \frac{\pi(\psi_c/A)}{\mathbb{E}_1(\pi)} < 1;$$

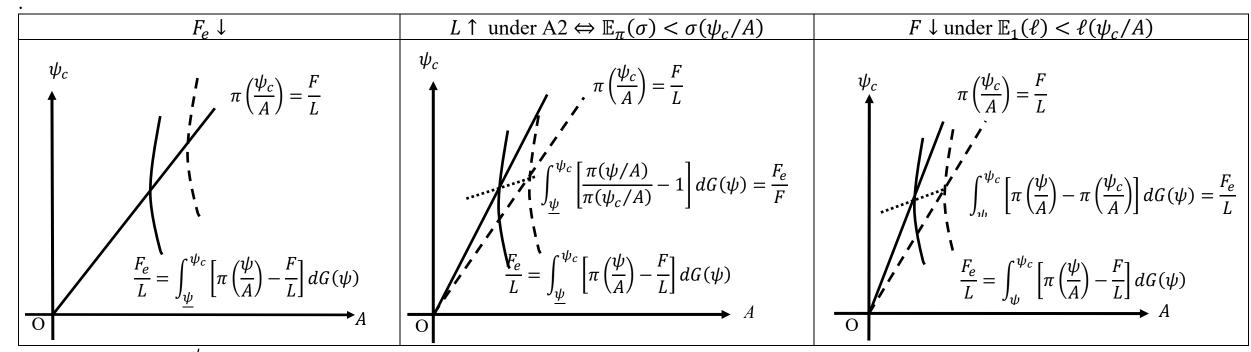
The share of the overhead in the total expected fixed cost = to the profit of the cut-off firm relative to the average profit among the active firms

$$\delta \equiv \frac{\mathbb{E}_{\pi}(\sigma) - 1}{\sigma(\psi_c/A) - 1} = \frac{\pi(\psi_c/A)}{\ell(\psi_c/A)} \frac{\mathbb{E}_1(\ell)}{\mathbb{E}_1(\pi)} \equiv f_x \frac{\mathbb{E}_1(\ell)}{\ell(\psi_c/A)} > 0.$$

The profit/labor cost ratio of the cut-off firm to the average profit/average labor cost ratio among the active firms.

Corollary of Proposition 6

	A	ψ_c/A	ψ_c
F_e	$\frac{dA}{dF_e} > 0$	$\frac{d(\psi_c/A)}{dF_e} = 0$	$\frac{d\psi_c}{dF_e} > 0$
L	$\frac{dA}{dL} < 0$	$\frac{d(\psi_c/A)}{dL} > 0$	$\frac{d\psi_c}{dL} < 0 \Leftrightarrow \mathbb{E}_{\pi}(\sigma) < \sigma\left(\frac{\psi_c}{A}\right)$, which holds globally if $\sigma'(\cdot) > 0$, i.e., under A2
F	$\frac{dA}{dF} > 0$	$\frac{d(\psi_c/A)}{dF} < 0$	$\left \frac{d\psi_c}{dF} > 0 \right \iff \mathbb{E}_1(\ell) < \ell\left(\frac{\psi_c}{A}\right)$, which holds globally if $\ell'(\cdot) > 0$



Note: For F = 0 & $\frac{\psi_c}{A} = \bar{z} < \infty$, the cutoff rule does not change $L \uparrow$ is isomorphic to $F_e \downarrow$

Market Size Effect on Profit and Revenue Distributions (Proposition 7)

7a: Under A2, there exists a unique $\psi_0 \in (\underline{\psi}, \psi_c)$ such that $\sigma(\frac{\psi_0}{A}) =$

 $\mathbb{E}_{\pi}(\sigma)$ with

$$\frac{d \ln \Pi_{\psi}}{d \ln L} > 0 \iff \sigma\left(\frac{\psi}{A}\right) < \mathbb{E}_{\pi}(\sigma) \text{ for } \psi \in \left(\underline{\psi}, \psi_{0}\right),$$

and

$$\frac{d \ln \Pi_{\psi}}{d \ln L} < 0 \iff \sigma\left(\frac{\psi}{A}\right) > \mathbb{E}_{\pi}(\sigma) \text{ for } \psi \in (\psi_0, \psi_c).$$

7b: Under A2 and the weak A3, there exists $\psi_1 > \psi_0$, such that

$$\frac{d \ln R_{\psi}}{d \ln L} > 0 \text{ for } \psi \in (\underline{\psi}, \psi_1).$$

Furthermore, $\psi_1 \in (\psi_0, \psi_c)$ and

$$\frac{d \ln R_{\psi}}{d \ln L} < 0 \text{ for } \psi \in (\psi_1, \psi_c),$$

for a sufficiently small *F*.

$$\ln \Pi_{\psi} = \ln \pi \left(\frac{\psi}{A}\right) + \ln L$$

$$\ln R_{\psi} = \ln r \left(\frac{\psi}{A}\right) + \ln L$$

$$\ln \psi$$

In short, more productive firms expand in absolute terms, while less productive firms shrink.

The Composition Effect: Average Markup and Pass-Through Rates

- Under A2, $A \downarrow$ causes $\mu(\psi/A) \downarrow$ for each ψ , but distribution shifts toward low- ψ firms with higher $\mu(\psi/A)$.
- Under strong A3, $A \downarrow$ causes $\rho(\psi/A) \uparrow$ for each ψ , but distribution shifts toward low- ψ firms with lower $\rho(\psi/A)$.

Proposition 8: Assume that $\mathcal{E}_g'(\cdot)$ does not change its sign and $\underline{\psi} = 0$. Consider a shock to F_e , L, and/or F, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of any weighted generalized mean of any monotone function, $f(\psi/A) > 0$, defined by

$$I \equiv \mathcal{M}^{-1} \left(\mathbb{E}_w \big(\mathcal{M}(f) \big) \right)$$

with a monotone transformation $\mathcal{M}: \mathbb{R}_+ \to \mathbb{R}$ and a weighting function, $w(\psi/A) > 0$, satisfies:

	$f'(\cdot) > 0$	$f'(\cdot) = 0$	$f'(\cdot) < 0$	
$\mathcal{E}_g'(\cdot) > 0$	$d \ln(\psi_c/A)$ $d \ln I$	$d \ln I$	$d \ln(\psi_c/A)$ $d \ln I$	
9	$\frac{d \ln A}{d \ln A} \ge 0 \Rightarrow \frac{d \ln A}{d \ln A} > 0$	$\frac{1}{d \ln A} = 0$	$\frac{d \ln A}{d \ln A} \ge 0 \Rightarrow \frac{d \ln A}{d \ln A} < 0$	
$\mathcal{E}_g'(\cdot) = 0 \text{ (Pareto)}$	$d \ln(\psi_c/A) \ge 0$ $d \ln I \ge 0$	$d \ln I$	$d \ln(\psi_c/A) \ge 0$ $d \ln I \le 0$	
	$\frac{d \ln A}{d \ln A} \ge 0 \Leftrightarrow \frac{d \ln A}{d \ln A} \ge 0$	$\frac{1}{d \ln A} = 0$	$\frac{d \ln A}{d \ln A} \ge 0 \Leftrightarrow \frac{d \ln A}{d \ln A} > 0$	
$\mathcal{E}_g'(\cdot) < 0$	$d \ln(\psi_c/A)$ $d \ln I$	$d \ln I$	$d \ln(\psi_c/A)$ $d \ln I$	
3	$\frac{d \ln A}{d \ln A} \le 0 \Longrightarrow \frac{d \ln A}{d \ln A} < 0$	$\frac{1}{d \ln A} = 0$	$\frac{d \ln A}{d \ln A} \le 0 \Longrightarrow \frac{1}{d \ln A} > 0$	

Moreover, if $\mathcal{E}'_g(\cdot) = \frac{d \ln(\psi_c/A)}{d \ln A} = 0$, $d \ln I/d \ln A = 0$ for any $f(\psi/A)$, monotonic or not. Furthermore, $\mathcal{E}'_g(\cdot)$ can be replaced with $\mathcal{E}'_g(\cdot)$ in all the above statements for $w(\psi/A) = 1$, i.e., the unweighted averages.

The arithmetic, $I = (\mathbb{E}_w(f))$, geometric, $I = \exp[\mathbb{E}_w(\ln f)]$, harmonic, $I = (\mathbb{E}_w(f^{-1}))^{-1}$, means are special cases.

The arithmetic, $I = (\mathbb{E}_w(f))$, geometric, $I = \exp[\mathbb{E}_w(\ln f)]$, harmonic, $I = (\mathbb{E}_w(f^{-1}))^{-1}$, means are special cases. The weight function, $w(\psi/A)$, can be profit, revenue, and employment.

Corollary 1 of Proposition 8

- a) Entry Cost: $f'(\cdot)\mathcal{E}'_g(\cdot) \geq 0 \Leftrightarrow \frac{d \ln I}{d \ln F_e} = \frac{d \ln I}{d \ln A} \frac{d \ln A}{d \ln F_e} \geq 0$.
- **b) Market Size:** If $\mathcal{E}'_g(\cdot) \leq 0$, then, $f'(\cdot) \geq 0 \Rightarrow \frac{d \ln I}{d \ln L} = \frac{d \ln I}{d \ln A} \frac{d \ln A}{d \ln L} \geq 0$.
- c) Overhead Cost: If $\mathcal{E}'_g(\cdot) \leq 0$, then, $f'(\cdot) \geq 0 \Rightarrow \frac{d \ln I}{d \ln F} = \frac{d \ln I}{d \ln A} \frac{d \ln A}{d \ln F} \leq 0$.

Furthermore, $\mathcal{E}'_g(\cdot)$ can be replaced with $\mathcal{E}'_G(\cdot)$ for $w(\psi/A) = 1$, i.e., the unweighted averages.

For the entry cost, $\frac{d \ln(\psi_c/A)}{d \ln A} = 0$.

- $\mathcal{E}'_g(\cdot) > 0$; sufficient & necessary for the composition effect to dominate:

 o The average markup & pass-through rates move in the *opposite* direction from the firm-level rates
- $\mathcal{E}'_g(\cdot) = 0$ (Pareto); a knife-edge. $A \downarrow \rightarrow$ no change in average markup and pass-through.
- $\mathcal{E}'_g(\cdot) < 0$; sufficient & necessary for the procompetitive effect to dominate: The average markup & pass-through rates move in the *same* direction from the firm-level rates

For market size and the overhead cost, $\frac{d \ln(\psi_c/A)}{d \ln A} < 0$

- $\mathcal{E}'_g(\cdot) > 0$; necessary for the composition effect to dominate:
- $\mathcal{E}'_q(\cdot) \leq 0$; sufficient for the procompetitive effect to dominate:

The Composition Effect: Impact on P/A

$$\ln\left(\frac{A}{cP}\right) = \mathbb{E}_r[\Phi \circ Z]$$

$$\zeta'(\cdot) \geq 0 \implies \Phi'(\cdot) \leq 0 \Leftrightarrow \Phi \circ Z'(\cdot) \leq 0$$

Corollary 2 of Proposition 8: Assume $\underline{\psi} = 0$, and neither $\zeta'(\cdot)$ nor $\mathcal{E}'_g(\cdot)$ change the signs. Consider a shock to F_e , L, and/or F, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of P/A satisfies:

	$\zeta'(\cdot) > 0 \text{ (A2)}$	$\zeta'(\cdot) = 0 \text{ (CES)}$	$\zeta'(\cdot) < 0$
	$\frac{d \ln(\psi_c/A)}{d \ln A} \ge 0 \Longrightarrow \frac{d \ln(P/A)}{d \ln A} > 0$	$\frac{d\ln(P/A)}{d\ln A} = 0$	$\left \frac{d \ln(\psi_c/A)}{d \ln A} \ge 0 \Longrightarrow \frac{d \ln(P/A)}{d \ln A} < 0 \right $
$\mathcal{E}_g'(\cdot) = 0$ (Pareto)	$\frac{d \ln(\psi_c/A)}{d \ln A} \ge 0 \Leftrightarrow \frac{d \ln(P/A)}{d \ln A} \ge 0$	$\frac{d\ln(P/A)}{d\ln A} = 0$	$\frac{d \ln(\psi_c/A)}{d \ln A} \ge 0 \Longleftrightarrow \frac{d \ln(P/A)}{d \ln A} \le 0$
$\mathcal{E}_g'(\cdot) < 0$	$\frac{d \ln(\psi_c/A)}{d \ln A} \le 0 \Longrightarrow \frac{d \ln(P/A)}{d \ln A} < 0$	$\frac{d\ln(P/A)}{d\ln A} = 0$	$\left \frac{d \ln(\psi_c/A)}{d \ln A} \le 0 \Longrightarrow \frac{d \ln(P/A)}{d \ln A} > 0 \right $

Comparative Statics on $MG(\psi_c)$

Proposition 9: Assume that $\mathcal{E}'_G(\cdot)$ does not change its sign and $\underline{\psi} = 0$. Consider a shock to F_e , F, and/or L, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of the mass of active firms, $MG(\psi_c)$, is as follows:

$$If \ \mathcal{E}'_{G}(\cdot) > 0, \qquad \frac{d \ln(\psi_{c}/A)}{d \ln A} \ge 0 \Rightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln A} > 0;$$

$$If \ \mathcal{E}'_{G}(\cdot) = 0, \qquad \frac{d \ln(\psi_{c}/A)}{d \ln A} \ge 0 \Leftrightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln A} \ge 0;$$

$$If \ \mathcal{E}'_{G}(\cdot) < 0, \qquad \frac{d \ln(\psi_{c}/A)}{d \ln A} \le 0 \Rightarrow \frac{d \ln[MG(\psi_{c})]}{d \ln A} < 0.$$

Corollary 1 of Proposition 9

a) Entry Cost: $\mathcal{E}'_G(\cdot) \geq 0 \Leftrightarrow \frac{d \ln[MG(\psi_c)]}{d \ln F_e} = \frac{d \ln[MG(\psi_c)]}{d \ln A} \frac{d \ln A}{d \ln F_e} \geq 0.$

b) Market Size: $\mathcal{E}_G'(\cdot) \leq 0 \Rightarrow \frac{d \ln[MG(\psi_c)]}{d \ln L} = \frac{d \ln[MG(\psi_c)]}{d \ln A} \frac{d \ln A}{d \ln L} > 0.$

c) Overhead Cost: $\mathcal{E}_G'(\cdot) \leq 0 \Rightarrow \frac{d \ln[MG(\psi_c)]}{d \ln F} = \frac{d \ln[MG(\psi_c)]}{d \ln A} \frac{d \ln A}{d \ln F} < 0.$

For a decline in the entry cost,

 $\mathcal{E}'_g(\cdot) > 0$ sufficient & necessary for $MG(\psi_c) \downarrow$; $\mathcal{E}'_g(\cdot) = 0$, no effect; $\mathcal{E}'_g(\cdot) < 0$; sufficient & necessary for $MG(\psi_c) \uparrow$ For market size and the overhead cost

 $\mathcal{E}_g'(\cdot) > 0$ necessary for $MG(\psi_c) \downarrow$; $\mathcal{E}_g'(\cdot) \leq 0$ sufficient for $MG(\psi_c) \uparrow$

Impact of Competitive Pressures on Unit Cost/TFP

By combining Corollary 2 of Proposition 8 and Corollary 1 of Proposition,

Corollary 2 of Proposition 9: Assume $\underline{\psi} = 0$, and neither $\zeta'(\cdot)$ nor $\mathcal{E}'_g(\cdot)$ change the signs. Consider a shock to F_e , L, and/or F, which affects competitive pressures, i.e., $dA \neq 0$. Then, the response of P satisfies:

	$\zeta'(\cdot) > 0 \text{ (A2)}$	$\zeta'(\cdot) = 0 \text{ (CES)}$	$\zeta'(\cdot) < 0$
$\mathcal{E}_g'(\cdot) > 0$	$\frac{d\ln P}{d\ln A} > 1 \ for \ F_e$	$\frac{d\ln P}{d\ln A} = 1$?
$\mathcal{E}_g'(\cdot) = 0$ (Pareto)	$\frac{d \ln P}{d \ln A} = 1 \text{ for } F_e$ $0 < \frac{d \ln P}{d \ln A} < 1 \text{ for } F \text{ or } L;$	$\frac{d\ln P}{d\ln A} = 1$	$\frac{d \ln P}{d \ln A} = 1 \text{ for } F_e$ $\frac{d \ln P}{d \ln A} > 1 \text{ for } F \text{ or } L$
$\mathcal{E}_g'(\cdot) < 0$	$0 < \frac{d \ln P}{d \ln A} < 1$	$\frac{d\ln P}{d\ln A} = 1$	$\frac{d \ln P}{d \ln A} > 1$

K. Matsuyama and P. Ushchev

Sorting of Heterogenous Firms: A Multi-Market Setting

Sorting: GE Implications in a Multi-Market Setting

Many markets of different size. Firms, after learning their ψ , choose which market to enter.

Proposition 10: Assortative Matching

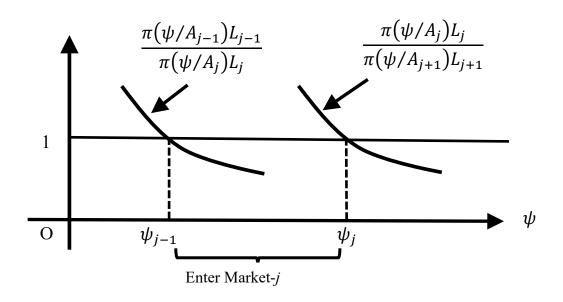
More competitive pressures in larger markets:

$$L_1 > L_2 > \dots > L_J > 0 \implies 0 < A_1 < A_2 < \dots < A_J < \infty$$

Under A2, more efficient firms sort themselves into larger markets: Firms $\psi \in (\psi_{j-1}, \psi_j)$ entering market-j, where

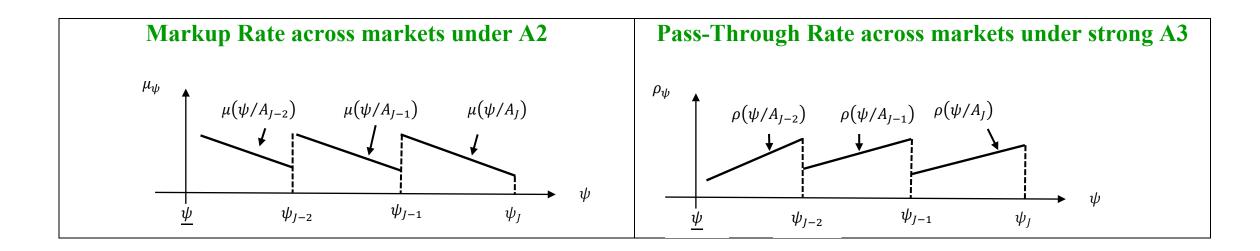
$$0 \le \psi = \psi_0 < \psi_1 < \psi_2 < \dots < \psi_J < \overline{\psi} \le \infty.$$

Sorting: GE Implications in a Multi-Market Setting



Proposition 11: The Composition Effect: *Examples* with Pareto-productivity such that

- The average markup rates *higher* (the average pass-through rates *lower* under Strong A3) in larger (more competitive) markets
- A decline in F_e causes uniform declines in ψ_i & A_i with the average markup/pass-through rates unchanged.



A caution against testing A2/A3 by comparing the average markup/pass-through rates in cross-section of cities.

Three Parametric Families of H.S.A. (Appendix D)

Generalized Translog

For $\eta > 0$, $\sigma > 1$

$$s(z) = \gamma \left(-\frac{\sigma - 1}{\eta} \ln \left(\frac{z}{\bar{z}} \right) \right)^{\eta}; \ z < \bar{z} \equiv \beta e^{\frac{\eta}{\sigma - 1}}$$

$$1 - \frac{1}{\zeta(z)} = \frac{\eta}{\eta - \ln\left(\frac{z}{\bar{z}}\right)} \Rightarrow \frac{\mathcal{E}_{\mu}(\cdot) < 0}{\mathcal{E}'_{\mu}(\cdot) = \rho'(\cdot) < 0}$$

satisfying A2; violating A3.

Translog is the special case where $\eta = 1$. CES is the limit case, as $\eta \to \infty$, while holding $\beta > 0$ and $\sigma > 1$ fixed.

Constant Pass-Through (CoPaTh)

For $0 < \rho < 1, \sigma > 1$

$$s(z) = \gamma \sigma^{\frac{\rho}{1-\rho}} \left[1 - \left(\frac{z}{\bar{z}}\right)^{\frac{1-\rho}{\rho}} \right]^{\frac{\rho}{1-\rho}}; \ \bar{z} \equiv \beta \left(\frac{\sigma}{\sigma-1}\right)^{\frac{\rho}{1-\rho}} \qquad 1 - \frac{1}{\zeta(z)} = \left(\frac{z}{\bar{z}}\right)^{\frac{1-\rho}{\rho}} \Rightarrow \frac{\mathcal{E}_{\mu}(\cdot) < 0}{\mathcal{E}'_{\mu}(\cdot) = \rho'(\cdot) = 0};$$

$$1 - \frac{1}{\zeta(z)} = \left(\frac{z}{\bar{z}}\right)^{\frac{1-\rho}{\rho}} \Rightarrow \frac{\mathcal{E}_{\mu}(\cdot) < 0}{\mathcal{E}'_{\mu}(\cdot) = \rho'(\cdot) = 0}$$

satisfying A2 & weak A3; violating strong A3

CES is the limit case, as $\rho \to 1$, while holding $\beta > 0$ and $\sigma > 1$ fixed.

Power Elasticity of Markup Rate (Fréchet Inverse Markup Rate)

For $\kappa \geq 0$ and $\lambda > 0$

$$s(z) = \exp\left[\int_{z_0}^z \frac{c}{c - \exp\left[-\frac{\kappa \bar{z}^{-\lambda}}{\lambda}\right]} \exp\left[\frac{\kappa \xi^{-\lambda}}{\lambda}\right]} \right] \qquad 1 - \frac{1}{\zeta(z)} = c \exp\left[\frac{\kappa \bar{z}^{-\lambda}}{\lambda}\right] \exp\left[-\frac{\kappa z^{-\lambda}}{\lambda}\right] \\ \Rightarrow \mathcal{E}_{\mu}(\cdot) < 0; \mathcal{E}'_{\mu}(\cdot) = \rho'(\cdot) > 0$$

$$1 - \frac{1}{\zeta(z)} = c \exp\left[\frac{\kappa \bar{z}^{-\lambda}}{\lambda}\right] \exp\left[-\frac{\kappa z^{-\lambda}}{\lambda}\right]$$
$$\Rightarrow \mathcal{E}_{\mu}(\cdot) < 0; \mathcal{E}'_{\mu}(\cdot) = \rho'(\cdot) > 0$$

satisfying A2 and strong A3 for $\kappa > 0$ and $\lambda > 0$.

CES for $\kappa = 0$; $\bar{z} = \infty$; $c = 1 - \frac{1}{\sigma}$; CoPaTh for $\bar{z} < \infty$; c = 1; $\kappa = \frac{1-\rho}{\rho} > 0$, and $\lambda \to 0$.